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We propose a scheme to implement the one-dimensional coined quantum walk with electrons transported
through a two-dimensional network of spintronic semiconductor quantum rings. The coin degree of freedom is
represented by the spin of the electron while the discrete position of the walker corresponds to the label of the
rings in one of the spatial directions in the network. We assume that Rashba-type spin-orbit interaction is
present in the rings, the strength of which can be tuned by an external electric field. The geometry of the
device, together with the appropriate spin-orbit interaction strengths, ensure the realization of the coin toss (i.e.,

spin flip) and the step operator.
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I. INTRODUCTION

Quantum walks' (QWs) are generalizations of classical
random walks to quantum systems. For reviews on quantum
walks see Refs. 2 and 3. The unitary time evolution of the
walk can be either discrete*® leading to coined QWs or
continuous.”® Recently, quantum walks have been shown to
be efficient tools to design quantum algorithms.%!® Coined
QWs were applied in the first algorithmic proposal'' for the
quantum walk search on a hypercube.

Several experimental schemes have been proposed to re-
alize coined QWs including ion traps,'”> microwave
cavities,'® cavity quantum electrodynamics,'* superconduct-
ing quantum electrodynamics,’> arrays of optical traps,'®
ground-state atoms,'” and ultracold Rydberg atoms'® in opti-
cal lattices, linear optics,'*->* Bose-Einstein condensation,?
coherent atomic system with electromagnetically induced
transparency,”® and in a Fabry-Perot cavity.”’” An experimen-
tal implementation of a continuous time QW on a two-qubit
NMR quantum computer’® has already been carried out. In
another experiment waveguide lattices were employed to re-
alize continuous time quantum walks.”” Up to now there is
no experimental realization of QWs in solid-state systems.
Implementation of the continuous time walk has been pro-
posed with tunnel-coupled quantum dots®® whereas in the
proposal of Ref. 31 electrons in lateral quantum dots would
realize the step operator of a quantum walk. In another
proposal,®? stimulated Raman adiabatic passage operations
are applied to an electron in a quantum dot to realize the
coined quantum walk on the line.

In this paper we consider a possible scheme for the imple-
mentation of a coined QW on the line, based on the ballistic
transport of an electron through a two-dimensional series of
semiconductor quantum rings. The spin of the electron plays
the role of the coin and its position in one of the spatial
directions corresponds to the position of the walker along the
line. The shift along the perpendicular spatial direction can
be considered as the discrete time steps.

Quantum rings,* which are the building blocks of our
proposal are nanoscale rings, fabricated in semiconductor
heterostructures such as InGaAs/InAlAs (Refs. 34 and 35) or
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HgTe/HgCdTe (Ref. 36) where the control of the electron
spin is possible due to, e.g., spin-orbit interaction (SOI) and
quantum interference. A widely studied type of SOI in such
heterostructures is the so-called Rashba SOIL37 which origi-
nates from the structural inversion asymmetry of the
interface-confining potential that is accompanied by an elec-
tric field directed along the normal of the interface, coupling
the electron-spin and orbital motion.?® This type of SOI has
gained much interest due to its tunability with external gate
voltages,’**? offering possible applications in semiconductor
spin electronics or spintronics.*!

Quantum rings with Rashba-type SOI have been shown to
have versatile applicability. A large variety of single-qubit
quantum gates can be realized by quantum rings connected
with two external leads,*> where the spin of the electron
plays the role of the qubit. Quantum rings with three termi-
nals can be used as electron-spin beam splitters, i.e., to po-
larize the spin of the electron on the outputs with different
spin directions.** Two-dimensional arrays of quantum
rings3*3% also show nontrivial spin transformations at the
outputs of the network.**

We focus on narrow rings in the ballistic (coherent)
regime,**4® where a one-dimensional model provides appro-
priate description. We propose a two-dimensional network of
such two- and three-terminal rings of appropriate size and
externally tunable Rashba SOI strength for the implementa-
tion of the coined QW on the line. We show that with appro-
priately chosen parameters, one can achieve reflectionless
operation which is necessary for the unitarity of the walk.

In usual experimental situations when ballistic properties
are investigated, the current is initiated by a potential differ-
ence on the two sides of the sample with metallic contacts. In
order to achieve the highest possible coherence length, ex-
periments are carried out at very low temperatures (few hun-
dred mK). The conduction is due to electrons with energies
very close to the Fermi energy of the material, i.e., the prob-
lem can be considered a stationary one. The spin state of the
electrons originating from the metallic contact is generally
not a pure quantum-mechanical state, it is a mixture. How-
ever, this means no significant restriction, as their spin can be
made polarized by, e.g., a three-terminal quantum ring.*?
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The paper is organized as follows. In Sec. II we give a
short overview of the model of the coined QW on the line. In
Sec. III we present the functional unit of the scheme; we start
with the model we use in Sec. III A, then in Sec. III B, we
show the ring that performs the coin toss, and then, in Sec.
IIT C, the ring, which is responsible for the step operation. In
Sec. IV we show, how a three-terminal ring can be used to
ensure interference at intermediary positions in the network.
In Sec. V, we present the proposed scheme to implement the
coined QW with quantum rings. Finally, we summarize our
results in Sec. VI.

II. COINED QUANTUM WALK ON THE LINE

In the classical random walk on the line, the walker tosses
a coin before each step. The direction of the step is deter-
mined by the actual state of the coin, i.e., the walker takes a
step to the left if the coin is heads or to the right if the coin
is tails (or vice versa). The quantum analog of such a walk
uses a quantum coin, the state of which can be a linear com-
bination of the classical heads and tails or mathematically,
any state of a “coin” Hilbert-space H, spanned by the two
basis states {|L),|R)}, where L(R) stand for “left” (“right”).
The positions of the walker also span a Hilbert-space Hp
={|i}:i e Z} with |i) corresponding to the walker localized in
position i. The states of the total system are in the space H
=H® Hp. The conditional step of the walker dependent on
the state of the coin, can be described by the unitary opera-
tion

S=|LXLl @ 2 i+ DGl + [RXRI @ X [i - 1. (1)

The coin toss is realized by a unitary operation C acting in
the space H . The QW of N steps is defined as the transfor-
mation UM, where U, acting on H="H® Hp is given by

U=S-(C®1), (2)

with 7 being the identity operator. A frequently used balanced
unitary coin is the Hadamard coin H, which is represented by
a matrix in which each element is of equal magnitude.

In the QW the coin state is not measured during interme-
diate iterations, thus quantum correlations between different
positions are kept, leading to interference in subsequent
steps. We note that this interference causes a radically differ-
ent behavior from that of the classical random walk. In par-
ticular, the probability distribution of the walk on the line
does not approach a Gaussian—it leads to a double-peaked
distribution—and the variance o? is not linear in the number
of steps N, it scales with o>~ N?, which implies that the
expected distance from the origin is of order o~ N, i.e., the
quantum walk propagates quadratically faster than the clas-
sical random walk. This property is at the heart of algorith-
mic applications.

In our proposal, the walker is the electron, which is trans-
ported through a two-dimensional network of quantum rings.
The coin states {|L),|R)} are represented by appropriate or-
thogonal states of the electron spin while the Hilbert-space
‘H p is characterized by the discrete positions of the electron
in one spatial direction in the network. In the following sec-
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tions we will show that quantum rings with appropriate ra-
dius and SOI strength act essentially as the unitary transfor-
mations H and S. Namely, a ring connected with two leads
acts essentially as the Hadamard operation H while a totally
symmetric three-terminal ring can implement the step opera-
tion S given by Eq. (1). These rings together (which we will
call a functional unit) act as the unitary transformation U,
given by Eq. (2). We note that this kind of operation of the
network is based on the fact that practically zero reflection
can be ensured at each individual ring, by appropriately
choosing the strength of the Rashba SOI and the geometry. If
considerable reflections were present in the network, the
state of the walker would spread out in two dimensions and
the analogy with the model of the QW could not be made.

III. FUNCTIONAL UNIT OF THE SCHEME

In this section we propose two- and three-terminal rings
to be buliding blocks of the QW scheme and introduce the
unit, which implements a single step of the QW with a Had-
amard coin. It consists of a two-terminal ring realizing the
Hadamard transformation (Hadamard ring) and a subsequent
three-terminal ring which performs the step operation (step

ring).

A. Model of quantum rings

We consider a narrow ring of radius a situated in the x-y
plane. The Hamiltonian in single-electron picture, in the

presence of Rashba SOI is given by*74
9 2 9
H= ﬁQ{ {— i@ + %((rx cos ¢ + 0, sin @)} - 4(1)?}’

3)

where ¢ is the azimuthal angle of a point on the ring, A}
=h?/2m*a” is the dimensionless kinetic energy, with m* de-
noting the effective mass of the electron, and w=a/#a is the
frequency associated with the SOI, which can be changed by
an external gate voltage that tunes the value of a.’® The
energy eigenvalues and the corresponding eigenstates of this
Hamiltonian can be calculated analytically.*>*’ For a ring
with leads attached to it, the spectrum is continuous; all posi-
tive energies can appear and they are fourfold degenerate.
This degeneracy is related to (i) two possible eigenspinor
orientations and to (ii) the two possible (clockwise and anti-
clockwise) directions in which currents can flow. The state of
the incoming electron is considered to be a plane wave with
wave number k. By energy conservation, its energy (given by
E=1/2k?/2m*) determines the solutions in the rings. At the
incoming lead—ring and the outgoing leads—ring junctions
(see Fig. 1), Griffith’s boundary conditions* are applied, that
is, the net spin current density at a certain junction has to
vanish and we also require the continuity of the spinor-
valued wave functions. (We note that there are other fre-
quently used boundary conditions as well,’**! they are usu-
ally based on detailed physical description of the junctions,
e.g., the nonideality of the couplings.) The solution of the
scattering problem in two- and three-terminal rings with one
input has been investigated in Refs. 42, 43, 47, and 52 and
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FIG. 1. Three-terminal ring with the most general boundary
condition. f, r, etc., denote two-component spinors, the arrows in-
dicate the direction of the corresponding wave number.

for a general boundary condition in Ref. 44. For the sake of
completeness, these results are summarized in the Appendix.

B. Hadamard ring

In this section we consider the quantum ring, which
implements the Hadamard coin-toss H. As it has been shown
in Ref. 42, a two-terminal ring acts as a linear transformation
on the spin state of the electron [see Eq. (A1) of the Appen-
dix]. When the parameter w/{) characterizing the strength of
the Rashba SOI is equal to —1 in a ring in which the two
terminals are in a diametrical position (see Fig. 1 without
lead 2 and y1 =) and there is only one input (i.e., f;=0), the
spin state r; of the transmitted electron is essentially the
Hadamard transform of the incoming spinor, i.e., the trans-
mission matrix corresponding to the ring is given by*?

A 1 1 1
T=C7< ) (4)
\s’2 -1 1

where

8ikaq . . T
¢=———sin(gm)sin| w— |,
y 2

and
9 =k*a’[1 - cos(2q )] + 4ikaq sin(2qm) — 4q*[cos(w)
+cos(2gm)],

with w=\1+(w/Q)? and g=\(w/2Q)*+k%a>.

In the most general case the transmission efficiency of the
quantum ring is less than 1, i.e., there is a nonzero probabil-
ity for the electron to be reflected into the terminal through
which it enters the ring. In order for the Hadamard ring to
operate in a unitary way, the transmission probability |c|?> has
to be equal to unity, which can be given by the following
condition:

k2a® sin*(g) = — 2¢*[cos(wr) + cos(2g)]. (5)

This condition can be satisfied for an appropriate radius of
the ring as can be seen in Fig. 2 of Ref. 42. We note that the
wave number k of the electron is determined by the Fermi
level of the semiconducting material in which the quantum
ring is fabricated. For InGaAs the Fermi energy is 11.13
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meV, corresponding to kpa=20.4 for a ring of radius
0.25 um. For the sake of definiteness we are going to focus
on this material.

C. Step ring

For the step operation to be implemented we use a three-
terminal ring which has only one input lead and two output
leads, and the leads are equally separated from each other
(i.e., v=2m/3, y,=4m/3, =0, and f,=0 in Fig. 1). The
outgoing spinors r; and r, are linear transforms of the incom-
ing spinor f, the transformations being given by Egs. (A2)
and (A3), respectively.

In the following we will recall the previously obtained
result,*>>? that a totally symmetric ring, which is shown in
Fig. 1, can be considered an electron-spin polarizer (the deri-
vation of this property is summarized in the Appendix). In
other words, there are two orthogonal input spin states, for
one of which, there is no output in lead 1 while for the other,
there is no output in lead 2. We will show that we can take
advantage of this property if we choose to define the coin
states to be these states and thus obtain a ring which per-
forms the step operation.

As derived in Refs. 43 and 52, and in the Appendix, if the
equations

cos(wm) =2 cos(q?) , (6a)

k 2
sin(wmr) = —asin(q—7T> , (6b)
q 3

are satisfied simultaneously then the ring polarizes a totally
unpolarized input, given by the density matrix @, propor-
tional to the identitiy. The polarized spinors exiting at the
two outputs

) 0 . 0
_ 6—177/3 sin— 6—1271'/3 Ccos—
2 2
|¢1> = 9 > |¢2> = , (1)
eiﬂ'/3 cos— ei277/3 sin—
2 2

are the eigenstates with nonzero eigenvalues 7, of the output
density matrices Q,Z:%Tn(fn)T(n:l,Z), where 7, are given
by Eq. (A10) of the Appendix. The corresponding eigenval-
ues, which describe the transmission probability in the out-
puts are

128k*a*q? sinz(q%w)
51

mM=1= , (8)

where

7 = 8¢°[cos(w) + cos(2gm)] — 12ikaq® sin(2g )

2 2
+ 6k2a2q{cos(2mr) - cos(q?ﬂ)] + ik3a3[3 sin(q?ﬂ)

- sin(Zqﬂ')} . 9
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If we determine the spinors |¢2) (n=1,2) annuled by the
transmission matrices 7~",,| ¢2> =0

6 .0

CcoS— —sin—
=, | 2= 0 | (10)

sin— CcoS—

2 2

then it can easily be seen, that if the input state is the
|9 (| %) pure state, then the transmission into output lead 1
(2) will be zero while the spin direction of the output in lead
2 (1) will be given by |,)(|¢))), i.e.,

) {|¢2> in lead 2
1 —

no output in lead 1

no output in lead 2

0
|¢2>_}{|¢1> in lead 1 ' (1)

These orthogonal input states are suitable to represent the
coin states {|L),|R)} in the QW as they form a basis in the
two-dimensional space of the electron spin and the polariz-
ing three-terminal ring acts on them as the step operator in
the QW, if the input spin (coin) state is |¢°)(|¢%)) the elec-
tron is transmitted into the output lead 2 (1), i.e., the walker
“takes a step to the left (right).” The change in the spin
direction at the outputs given by Eq. (7) means that the states
|,) and |¢,) are rotated versions of the two orthogonal in-
puts |#3) and |¢Y), respectively, where the rotation is around
the z axis by the angle of the given output lead. As we will
see in the following, these rotations can be reversed by the
application of appropriate rings.

In order for the transformation to be unitary the step ring
also has to be reflectionless, that is, the transmission prob-
abilities into the two outputs given by Eq. (8) should be
equal to unity, i.e., 7;=1,=1/2. It can be easily verified that
this condition can be formulated by the following equations:

2 2
Ka® sin{q%)cos(gf) + g*[cos(wm) + cos(2gm)] =0,

(12a)

2
K sin3<q?w> + ¢ sin(2gm) = 0. (12b)

which, for an appropriate combination of the parameters
{a,w/Q,y,} can be satisfied together with Egs. (6a) and (6b)
as can be seen in Fig. 2 for the experimentally feasible range
of the parameters.

In order to use the same building blocks (i.e., the Had-
amard ring and the step ring again) for later steps, the rota-
tions on the basis states introduced by the step ring need to
be removed. This can be done, e.g., by the application of two
two-terminal rings which act as 7A"“)=U§,'T/3 and f‘z)zUZJTB,
where
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FIG. 2. (Color online) Determination of the parameter values
corresponding to the step ring: Egs. (6a) and (6b) are satisfied along
the blue (dotted) and gray (dashdotted) lines, respectively while
Egs. (12a) and (12b) are satisfied along the red (solid) and green
(dashed) lines, respectively. At the intersection of these four curves
the totally symmetric (y;=27/3 and y,=4/3) three-terminal ring
behaves as a perfect polarizing device with practically zero reflec-
tion, i.e., as the step ring.

e—iy/2 0
Uy= 0 ) (13)

Although these conditions can be fullfilled if y=4m/3 and
y=2m/3, respectively, the radius of the rings cannot by
made equal to that of the step ring, which does not permit the
simple attachment of successive building blocks. We will
show in the following section, that three-terminal rings of the
same size as the step ring with an appropriate SOI strength,
can also rotate the spin states in the desired way, as well as
allow of the continuation of the units.

IV. INTERFERENCE AT INTERMEDIARY POSITIONS

Clearly, the functional units have to be combined so that
the walker can arrive in any intermediate point on the “line
of the walk” from two directions, i.e., interference phenom-
ena can take place. In order to implement this crucial prop-
erty of the QW, we use another quantum ring, which is ca-
pable of adding the two probabilty amplitudes that both
represent the walker at the given point on the line of the
walk, as well as rotating the spins back into the basis states
|¢Y) and |¢9). Now we show that this can be done with a
completely symmetric three-terminal ring which has the
same radius as the step ring and in which the magnitude of
the SOI strength is the same but its direction is opposite.

If two leads of a symmetric three-terminal ring are con-
sidered as inputs and the other terminal as an output (see Fig.
1 with f=0), the matrices of the one-input case, given by
Eqs. (A2) and (A3), are enough to handle the problem.**
Namely, we can consider the two inputs f; (i=1,2) sepa-
rately and determine the corresponding matrices. The outputs
in each terminal in the superposed problem will consist of
contributions from both inputs. Considering f;(f,) as the
only input, the transmission matrices in the reference frame
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FIG. 3. (Color online) The geometry of the functional unit of the
scheme, where the rotations introduced by the step ring are re-
moved by symmetric three-terminal rings of the same size as the
step ring but with opposite SOI strength. The colors indicate the
value of the SOI strength (w/Q): light blue (dark gray), yellow
(light gray), and dark blue (black) corresponding to —1, 2.27, and
—2.27, respectively. The radius of the Hadamard ring is ay
=0.248 um while that of the other rings is ag=0.266 um.

of f,(f,) are the same as those for the input f, given by Egs.
(A2) and (A3). In order to get the contributions to the output
spinors (r,r;,r,) for the input f;(f>) in the reference frame of
r, the matrices need to be rotated by the angle of v,
=2/3(y,=41/3). Furthermore, since we have considered a
propagation of the electron from the left to the right, the
symmetric three-terminal ring we want to use to add the two
(spin-dependent) probability amplitudes has to be rotated by
an angle of 7 with respect to Fig. 1. This means an addi-
tional rotation of each matrix by .

If the radius of the above-mentioned ring is the same as
that of the step ring, and the applied SOI strength (w/}) is
of the same magnitude but opposite direction (in which case
the polarization condition given by Eq. (6), and the condition
for zero reflection of the input, given by Eq. (12) also hold),
then by using Eq. (A10) of the Appendix, it can easily be
shown that zero reflection in the two input arms without any
transmission from one input lead into the other (i.e., r;=r,
=0) is automatically guaranteed. Additionally, the probability
of transmission from the two inputs into the output is the
same and the coin states |¢;) and |¢,) are rotated into |49
and |<;b(l)), respectively. Hence, such a ring will be able to
transform the two inputs into the superposition of the basis
states (|#)) and |$))) with the same weights.

This ring can also be used for the same purpose as the
two-terminal rings mentioned in the previous section. Figure
3 shows the functional unit of the scheme. The colors of the
rings denote the value of the SOI strength, which together
with the appropriate radius of the ring, guarantee that no
reflection occurs at the inputs. The advantage of using this
symmetric three-terminal ring is that it has the same size as
the step ring, providing a more symmetrical arrangement for
the QW (see Fig. 4). Additionally, measuring currents at the
junctions indicated by the short lines in Fig. 3, can be used
for determining the functionality of the device as no currents
should leave the network through these leads under ideal
circumstances.
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Step number: 1 2 3

FIG. 4. (Color online) The geometry of the device for three
steps. The colors and the radii of the rings are the same as in Fig. 3.
The vertical dashed lines indicate where the discrete steps take
place along the horizontal direction. The vertical direction corre-
sponds to the line of the walk, along which the walk takes place. We
have indicated in the vertical direction on the right-hand side of the
figure the discrete position states of the walker (the electron) on the
line after three steps.

V. PROPOSED SCHEME

Our scheme uses several functional units as building
blocks for the implementation of the QW on the line, thus
actually it corresponds to a two-dimensional displacement of
the walker (the electron). One spatial dimension represents
the line of the walk along which the walk is realized while
the role of the other dimension is twofold. First it is neces-
sary from the technical point of view, it is needed for the
transformations (coin toss and step) to be made but it is also
related to the discrete time steps of the walk; the number of
the functional units increases in this direction, according to
the possible positions of the walker that completes increasing
number of steps. In other words, the notion of time enters the
otherwise time-independent scheme via this spatial direction.

Figure 4 shows a device capable of implementing three
steps of a QW on the line with a Hadamard coin. The colors
denote the value of the SOI strength in the rings, which
together with the appropriate radius of the ring, guarantee
that no reflection occurs at the inputs. For the removal of the
rotations of the spins the same symmetric three-terminal ring
is used (see Fig. 3) as the one which adds the probability
amplitudes at intermediary positions. The vertical dashed
lines indicate where the discrete steps take place along the
horizontal direction. The vertical direction corresponds to the
line of the walk along which the walk takes place. On the
right-hand side of the figure we have indicated the discrete
position states of the walker (the electron) on the line of the
walk after three steps. As the transmission probabilities are
proportional to the value of the current, by measuring the
currents on these terminals the distribution characteristic of a
QW appears.

VI. CONCLUSION

We have proposed a scheme for the implementation of the
coined QW on the line, where the coin is the spin of the
electron, quantum rings are used to realize the coin toss and
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the step operations, and the shift of the electron in one spatial
direction corresponds to the walk along the line.

Let us note that our scheme is based on a one-dimensional
model of quantum rings that assumes single-channel ballistic
transport. Although spin coherence lengths of 100 and
350 wm have been found in bulk GaAs (Ref. 53) and Si
(Ref. 54) samples, respectively, the coherence lengths of the
orbital wave function are typically two magnitudes shorter,
even in modulation-doped heterostructures, where the mobil-
ity is higher. In the case of InGaAs/InAlAs, the coherence
lengths of the orbital wave function are typically in the range
of a few microns,* which means a severe constrain for our
QW scheme. On the other hand, there are samples, where
transport is due to many channels in the ring,* for which our
results are not directly applicable. It is beyond the scope of
this paper to investigate in detail how phase-destroying
events affect the functionality of the proposed network but
preliminary results indicate that the functionality can tolerate
moderate level of scattering-induced errors, thus a few steps
of the QW could be implemented.

Our aim was to demonstrate the possibility of a scheme
for the QW with semiconductor quantum rings. Further op-
timization on the number of rings and the geometry of the
network might be possible.
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APPENDIX

For the sake of completeness we present the analytic ex-
pressions for the transmission matrices of one-input two- and
three-terminal rings, in which Rashba SOI is present. These
matrices are obtained by applying Griffith’s boundary
conditions*® at the junctions between the incoming lead and
the ring, and the outgoing lead(s) and the ring (see Fig. 1),
that is, requiring vanishing net spin current density at a cer-
tain junction, as well as the continuity of the spinor-valued
wave functions.

The transmission matrix of a two-terminal ring (see Fig. 1
without lead 2 and y,=1) is given by*?

N 4ika ) 0 .. .0
Ty = ! - qe“y/z(h cos?— + h* sm2—>,
v 2 2

. 4ikaq _.
TTl — - qe—w/Z
y

.0 0 N
sin—cos—(h—h"),
2 2

Ty =e"Ty,

N 4dika
7 q

. 0 ) 0
1= e”’”(h sin’= + h* cosz—>, (A1)
y 2 2

where
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h=e"sin[q(2m— )]~ e sin(gy)},

3 = k*a*{cos[2q(m — v)] - cos(2q )} + 4ikag sin(2qT)
— 4q*[cos(wr) + cos(2gm)],

0= arctan(— /()

with w=1+w?/Q? and g=\(w/Q)*+k*a>.

The transmission matrices of a totally symmetric (i.e.,
v,=2/3 and y,=4m/3) three-terminal ring, which is shown
in Fig. 1 (with f}, f,=0) are given by*>3

8kaq 9 o . .
fqe’zm[coszz(hl +hy) + sinza(h1 - hz)} ,

(TI)TT =

= 8kaq ., . . 6 6 .
(T, = - 2713 SIHECOSE[(}Z' +hy) = (hy = h)],

(TI)H — e—i4~n-/3(rf1)”’

- 8k . % 0. .
(T, =— "e-ﬂ”/{sinzg(hl + 1) + 08”1} - hé)] ,
(A2)
(Tz)n = (fl)ll’

(fz)m == (Tl)“,

(Tz)u == (i)“,
(Tz)u = (Tl)m, (A3)

where

. 2

hy = kae™™ sinz(q?w>, (A4)

) 4 . 2
hy=— ic[{e’w”’3 sin(q—ﬂ-) — 723 sin(q—w> } . (A5)
3 3
7 =8¢°[cos(wm) + cos(2gm)] — 12ikag® sin(2g )

2 2
+ 6k2a2q{005(26177) - cos(q?ﬂ-)] + ik3a3[3 sin(q?w)

- sin(ZqW)} ) (A6)

In order for such a ring to polarize a totally unpolarized
input that is described by the density matrix @ proportional

to the identitiy, the output density operators @,=7,0(T,)"
(n=1,2) need to be projectors

1~ ~
Qn = ETH(TVL)T = nﬂ|¢n><¢n b (A7)

where the non-negative numbers 7, measure the efficiency
of the polarizing device. Equation (A7) is equivalent to re-

035327-6



QUANTUM WALK ON THE LINE WITH QUANTUM RINGS

quiring the determinants of 7,(7,)" to vanish. These determi-
nants are equal and zero if A, = h,=0, which, using Egs.
(A4) and (A5) can be formulated as

cos(wmr) =2 cos(qz?ﬂ-), (A8)
sin(wm) = * k—asin<q2—w). (A9)
q 3

If we focus on the case when condition % +%,=0 holds, then
the transmission matrices have the simple form

) 0 . .0
el27T/3 COSZE 61211'/3 sin—cos—
T,=¢ p p , (A10a)
e 2™ gin—cos— e 2™ gin’—
2 2 2

PHYSICAL REVIEW B 80, 035327 (2009)

.8 8
6—1277/3 S11’12_ _ 8—1277/3 sin—cos—
~ 2 22
T2 =C P P N
_ ei27'r/3 sin—cos— ei277/3 COSZ_
2 2 2

(A10Db)

where ¢=8kagh,/y. In the above equations # and ¢ are de-
termined by the parameters [ka, /(] calculated from the
polarization condition given by Eq. (6). Using Eq. (A10), the
polarized outputs |¢,) can easily be determined as the eigen-
states of the output density matrices Qn=%7~",,(7~"n)T corre-
sponding to the nonzero eigenvalues 7,.
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